Thermodynamics of the Actinoid Elements. Part 6.¹ The Preparation and Hcats of Formation of Some Sodium Uranates(VI)

Tze Chung Tso and David Brown*

Chemistry Division, A.E.R.E., Harwell, Oxfordshire OX11 ORA Austin I. Judge and John H. Holloway Department of Chemistry, University of Leicester, Leicester LE1 7RH Jean Fuger Laboratory of Analytical Chemistry and Radiochemistry, University of Liège (Sart Tilman), B-4000 Liège, Belgium

The preparation of sodium uranates(vi) has been investigated by heating together appropriate amounts of Na₂O₂ and UO₂ and also by the thermal decomposition of complexes such as Na₄U(C₂O₄)₄·3H₂O, Na₄UO₂(CO₃)₃·nH₂O, Na₂UO₂(C₂O₄)₂·4H₂O, and NaUO₂(CH₃COO)₃. The enthalpies of solution in 1.00 mol dm⁻³ HCl of high-purity samples of β -Na₄UO₅, α - and β -Na₂UO₄, and Na₂U₂O₇, prepared by the latter method, are -386.6 ± 0.6, -171.9 ± 0.4, -184.2 ± 0.4 and -171.8 ± 1.0 kJ mol⁻¹, respectively. The resulting enthalpies of formation, -2 457.3 ± 2.8, -1 901.3 ± 2.3, -1 889.0 ± 2.3, and -3 203.8 ± 2.8 kJ mol⁻¹, are discussed in relationship to published values. X-Ray powder diffraction studies appear to confirm the existence of α -Na₄UO₅.

Alkali-metal and alkaline-earth-metal uranates(vI) have been extensively investigated, see for example ref. 2 and 3, but relatively little is known about the properties of analogous transuranium-element compounds. This is particularly true for thermodynamic properties where the first data on neptunium-(vI) and plutonium(vI) alkaline-earth-metal oxides have appeared recently^{4.5} or have just been determined.⁶ As a preliminary to work on alkali-metal neptunates(vI) and plutonates(vI) the preparation of selected high-purity sodium uranates(vI) has been explored with the dual aims of establishing reliable preparative methods which yield stoicheiometric oxides, and providing additional thermodynamic data in those instances where either only a single value was available or a discrepancy existed.

Investigations of the Na₂O₂-UO₂ reaction under a variety of conditions are described together with results on the thermal decomposition of the uranium-(IV) and -(VI) complexes Na₄U-(C₂O₄)₄·3H₂O, NaUO₂(CH₃COO)₃, Na₂UO₂(C₂O₄)₂·4H₂O, and Na₄UO₂(CO₃)₃·nH₂O. Using the latter technique high-purity samples of β -Na₄UO₅, α -Na₂UO₄, β -Na₂UO₄, and Na₂U₂O₇ have been prepared and their enthalpies of solution in 1 mol dm⁻³ HCl determined. The resulting enthalpies of formation are compared with available literature values.

Experimental

Reagents.—Sodium peroxide, Na₂O₂ (Alpha chemicals) (>99% purity), was used as purchased. Stoicheiometric uranium dioxide was provided by M. Mignanelli (Chemistry Division, A.E.R.E., Harwell). Sodium acetate, oxalate, and carbonate (AnalaR grade materials) were used without further purification. The compounds $U(C_2O_4)_2 \cdot 6H_2O$ and $UO_2 - (C_2O_4) \cdot 3H_2O$ were precipitated from aqueous oxalic acid solutions on addition of UCl_4 and UO_2Cl_2 , respectively; $UO_2(CH_3COO)_2 \cdot 2H_2O$ was crystallised from a solution of UO_3 in hot, glacial acetic acid.

Uranium Complexes.—The compound $U(C_2O_4)_2 \cdot 6H_2O(1.29)$ g) was added to an aqueous solution of sodium oxalate (0.69 g). Complete dissolution was achieved by heating at 80 °C. After cooling the addition of methanol resulted in a *precipitate* of Na₄U(C₂O₄)₄·3H₂O which was isolated by centrifugation, washed with methanol, and vacuum dried at room temperature. Typical product analysis: Found, Na 12.6, U 32.3, 32.4; Na₄U(C₂O₄)₄·3H₂O requires Na 12.5, U 32.3%.

The compound $UO_2(C_2O_4) \cdot 3H_2O$ (2.25 g) was dissolved in a hot (80 °C) aqueous solution containing a 1:3 stoicheiometric molar excess of sodium oxalate. The solution was filtered and cooled; *crystals* of Na₂UO₂(C₂O₄)₂·4H₂O formed after several days. Typical product analysis: Found, Na 8.1, U 42.1; Na₂UO₂(C₂O₄)₂·4H₂O requires Na 8.15, U 42.2%.

Sodium acetate (0.82 g) was added to a hot solution of uranyl(v1) acetate (3.85 g) in glacial acetic acid containing ammonium acetate to assist dissolution. On cooling *crystals* of NaUO₂(CH₃COO)₃ separated: these were isolated by filtration, washed with a mixture of diethyl ether and ethanol, and vacuum dried. Typical product analysis: Found, Na 4.8, U 50.45, 50.2; NaUO₂(CH₃COO)₃ requires Na 4.9, U 50.65%.

Addition of an aqueous, saturated solution of Na₂CO₃ to uranyl(v1) nitrate (5.2 g) in water initially gave a yellow precipitate. This was redissolved by addition of just sufficient of the saturated Na_2CO_3 solution to give a clear solution, from which crystals of Na₄UO₂(CO₃)₃·nH₂O (1.5 < n < 3.5) were obtained on addition of methanol. The product was washed with small volumes of 50% aqueous methanol, methanol, and finally ether and air-dried at room temperature. The variable uranium analyses were attributed to different water contents of different preparations since U: Na mol ratios of 1:4 were found (e.g. Na 16.05, U 41.2%) and, as described later, uranium analyses showed that β -Na₄UO₅ was obtained on thermal decomposition of the products. This is supported by the absence of impurity reflections on the high-quality X-ray powder photographs of the various preparations of this sodium uranate(vi).

Samples of β -Na₄UO₅, α - and β -Na₂UO₄, and Na₂U₂O₇ used for calorimetric studies were prepared on the 100—300 mg scale by thermal decomposition of uranium-(IV) and -(VI) complexes in gold crucibles using the conditions given in Table 1. Reactions involving stoicheiometric amounts of Na₂O₂ and UO₂ (100—200 mg scale) for the formation of Na₄UO₅ and Na₂UO₄ were also done in gold crucibles *in vacuo* or in an argon, argon-oxygen, or oxygen atmosphere. Alternatively, evacuated, sealed silica ampoules were used to contain the reactants.

	_		Analysis (%)"	
	Prepar-	· · · · · · · · · · · · · · · · · · ·		
Compound	ation	Method	U	Na
β-Na₄UO ₅	Ι	$Na_4UO_2(CO_3)_3 \cdot nH_2O$	58.0, 57.9	
		at 800 °C in O ₂ for 21.5 h	(58.0)	(22.4)
	II	$Na_4U(C_2O_4)_4 \cdot 3H_2O$	58.0	22.4
		at 800 °C in O ₂ for 19 h		
α -Na ₂ UO ₄	Ι	$Na_2UO_2(C_2O_4)_2 \cdot 4H_2O$	68.5, 68.2	
		at 760 °C in O ₂ for 19.5 h	(68.4)	(13.2)
	II	$Na_2UO_2(C_2O_4)_2 \cdot 4H_2O$	68.3, 68.4	13.2
		at 720 °C in O_2 for 22 h		
	III	$Na_2UO_2(C_2O_4)_2 \cdot 4H_2O$	68.4, 68.2	13.2
	_	at 760 °C in O_2 for 21 h		
β-Na₂UO₄	I	$Na_2UO_2(C_2O_4)_2 \cdot 4H_2O$	68.3, 68.4	13.2
		at 880 °C in O_2 for 22.5 h	(0 4 (0 4	12.2
	11	$Na_2UO_2(C_2O_4)_2 \cdot 4H_2O$	68.4, 68.4	13.2
		at 900 °C in O_2 for 20 h	760 761	
$Na_2U_2O_7$	I	NaUO ₂ (CH ₃ COO) ₃ at	/5.0, /5.1	(7.2)
		650 °C in O_2 for 22.5 h	(/5.1)	(7.3)
	11	NaUO ₂ (CH ₃ COO) ₃ at 700% (CH ₃ COO) ₃ at	/4.9, /5.1	1.1, 1.2
	***	100° C in O_2 for 19 n	740 751	71 71
	III	$100^{\circ}C$ in O_{10} for 10 h	74.9, 73.1	/.1, /.1
	IV	Natio (CH COO) at	750 751	72 72
	1 V	$800^{\circ}C$ in O for 22 h	75.0, 75.1	1.2, 1.2
	v	NaLIO (CH COO), at	Ь	Ь
	•	$750 ^{\circ}\text{C}$ in O for 16 h	U	υ
	VI	NaUO.(CH.COO), at	74 1	7.3
	* 1	750 °C in Q. for 2 h	/ 7.1	
	VII	NaUO ₂ (CH ₂ COO) ₂ at	75 1	7.4
	• • •	750 °C in O ₂ for 2.5 h		

Table 1. Preparative conditions and analyses of the various sodium uranates(VI)

^a Theoretical values in parentheses. ^b Identified by X-ray powder diffraction analysis which showed the absence of impurity reflections.

Products were removed from the reaction vessels in a nitrogen glove-box (water and oxygen <20 p.p.m.) and all subsequent handling was done in nitrogen atmospheres.

Analyses.—Uranium was determined gravimetrically by heating precipitated hydrated oxides at > 700 °C in air and weighing as U_3O_8 . Sodium was determined by atomic absorption spectroscopy. Results are given in Table 1.

X-Ray Measurements.—X-Ray powder photographs were recorded as described previously.⁷ Unit-cell dimensions were refined using the program COHEN.⁸

Enthalpies of Solution.—Measurements were made using two calorimeters: a vacuum-jacketed isoperibol microcalorimeter with a tantalum chamber, which has been described elsewhere,^{9,*} and an air-jacketed isoperibol calorimeter (model 8700-1; LKB, Bromma, Sweden) with a glass vessel, and equipped with a Hewlett-Packard (San Diego, California) model 7131 A/B strip chart recorder. Details of calibration runs have been published.¹⁰⁻¹²

Samples were weighed, in the appropriate calorimetric ampoules, on a model GRAM electric balance (Cahn, Paramount, California); weights were reduced to weights *in vacuo*. The sodium uranates(VI) were handled in a dry, oxygenfree nitrogen atmosphere, which contained less than 10 p.p.m. water vapour (Alnor Dewpoint meter, Casella, London) and less than 10 p.p.m. oxygen (potential drop across a ZrO_2 membrane¹³).

Merck-titrated 1.000 mol dm^{-3} hydrochloric acid solutions were used for sample dissolution.

Units and Limits of Error.—The joule (J) is used throughout as the energy unit. All literature data originally reported in calories were recalculated using the conversion factor 1 cal (thermochemical) = 4.184 J. The ¹²C scale of atomic weights ¹⁴ was used to calculate molecular weights. All the calorimetric measurements are reported for 298.15 \pm 0.05 K.

Uncertainty limits on the mean of several identical measurements and representing the consistency of the measurements are based on the 95% confidence interval ¹⁵ except where stated (*cf.*, Table 2). When combining the new results with data from other sources no attempt has been made to retain this limit; the error stated by the author has been accepted. The errors quoted for the calculated enthalpies of formation were obtained from the errors on the individual terms of the thermodynamic cycle used, according to a standard procedure.¹⁶ Unless otherwise specified, auxiliary data recommended by CODATA or values consistent with the CODATA selection were employed.¹⁷

Results and Discussion

Preparation of Sodium Uranates(VI).—The compounds chosen for investigation were Na_4UO_5 , α - and β - Na_2UO_4 , and $Na_2U_2O_7$.

Initial studies of the preparation of Na₄UO₅ involved the interaction of UO₂ and Na₂O₂, stoicheiometric amounts (1:2) of which were intimately mixed by grinding prior to being heated in gold crucibles either *in vacuo*, or in argon, argonoxygen mixtures, or oxygen at temperatures in the range 360— 800 °C. At temperatures below 400 °C the deep red products were shown by X-ray powder diffraction analysis to be mixtures of sodium uranates(vi). Thus, for 36-h reactions (2 × 18 h with intermediate regrinding) done *in vacuo* or under argon the major phase could be indexed on the basis of a face-centred cubic (f.c.c.) unit cell, whilst the additional very weak reflections could be attributed to Na₂U₂O₇. For reactions done in oxygenargon mixtures and in oxygen the changes in relative intensities of the reflections indicated that increasing amounts of Na₂U₂O₇ were being formed, presumably *via* reaction (1).

$$\operatorname{Na_2O_2}(s) + 2 \operatorname{UO_2}(s) + \frac{1}{2} \operatorname{O_2}(g) \longrightarrow \operatorname{Na_2U_2O_7}(s)$$
 (1)

The unit-cell dimension of the f.c.c. phase [a = 4.764(1) Å]is very close to that reported by Keller¹⁸ for a α -Na₄UO₅ (a = 4.766 Å), which he obtained by reaction of UO₃ with Na₂O at 400—450 °C. Although the existence of this phase has been queried by Cordfunke and Loopstra,¹⁹ who obtained only β -Na₄UO₅ under the same conditions, the present crystallographic results appear to confirm that a low-temperature modification does exist and can also be obtained by reaction (2).

$$2\mathrm{Na}_{2}\mathrm{O}_{2}(\mathrm{s}) + \mathrm{UO}_{2}(\mathrm{s}) \xrightarrow{360^{\circ}\mathrm{C}} \mathrm{Na}_{4}\mathrm{UO}_{5}(\mathrm{s},\alpha) + \frac{1}{2}\mathrm{O}_{2}(\mathrm{g}) \qquad (2)$$

For reaction periods of 100–120 h in an oxygen atmosphere the α -Na₄UO₅ was contaminated with β -Na₄UO₅ and larger amounts of Na₂U₂O₇ than in 36-h reactions, presumably due to reaction (3).

$$Na_2U_2O_7(s) + 3Na_2O_2(s) \longrightarrow 2Na_4UO_5(s,\beta) + \frac{3}{2}O_2(g) \quad (3)$$

Additional studies at 360 °C in evacuated, sealed silica ampoules yielded α -Na₄UO₅ mixed with Na₂U₂O₇ after 36 h,

^{*} Although the calorimeter chamber has remained unchanged, many modifications to the circuitry (timer, power source, *etc.*) have been made throughout the years.

				Sample weight	Concentration of compound in solution (10 ⁻³		
Compound	Preparation	Experiment	Calorimeter ^a	(mg)	mol dm ⁻³)	Enthalpy effect (J)	∆H ^b /kJ mol ⁻¹
β-Na₄UO ₅	I	1	Α	4.024	1.155	3.8053	- 387.7
		2		3.284	0.942	3.1005	- 387.1
		3		3.952	1.134	3.7387	387.9
		4		3.399	0.975	3.2074	- 386.9
		5		5.048	1.449	4.7457	- 385.4
		6		5.203	1.493	4.9084	- 386.8
	II	1	В	11.930	1.164	11.253	- 386.7
		2		13.630	1.330	12.827	- 385.8
		3		16.430	1.603	15.464	385.9
		4		16.425	1.602	15.464	- 386.0
						Ave	erage: -386.6 ± 0.6
a-Na-UO.	I	1	Α	8.457	2.850	4.1692	- 171 7
	-	2		9.406	3.180	4.6605	-172.4
		3		7.642	2.583	3.8022	-173.1
		4		6.556	2.216	3.2538	-172.7
		5		7.594	2.567	3.7595	-172.3
	П	1	Α	5.767	1.950	2.8412	-171.5
		2		9.011	3.046	4.4512	-171.9
		3		5.971	2.019	2.9470	-171.8
		4		6.076	2.054	3.0220	-172.0
		5		5.744	1.942	2.8227	-171.0
	III	1	B (1)	37.175	1.068	18.322	-171.5
		2		34.600	0.994	17.118	-172.2
		3		29.600	0.880	14.514	-170.6
						Ave	rage: -171.9 ± 0.4
β -Na ₂ UO ₄	т	1	А	7.005	2 385	3 7290	-1839
	•	2	<i>′</i> •	5 508	1.862	2 9097	-183.8
		3		7 909	2 674	4 1853	- 184 2
	П	ĩ	B(1)	33.120	0.952	17.529	- 184.2
		2	-(-)	24.980	0.718	13.254	-184.6
		3		38.795	1.115	20.575	-184.6
						Ave	erage: -184.2 ± 0.4
NaUO	7		р	10.450	0.472	2966	170.6
Na ₂ U ₂ U ₇	1	י ר	D	10.030	1 256	2.000	- 1 /0.0
		2		20.005	1 210	5.612	-1/1.1
		3		18 215	1.319	1 806	-170.2
	Ш	4	B (1)	28 025	0.442	4.070	
	iv	1	$\mathbf{B}(1)$	53.16	0.838	14 434	- 170.8
	1 4	2	D (1)	56 76	0.805	15 401	-172.2
		3		52.42	0.877	14 326	-173.3
		4		47.83	0.327	13 053	-173.0
		5		72.22	1,139	19.679	-1728
	v	ĩ	B (1)	41.61	0.656	11.194	-170.6
	•	;	-(1)	48.84	0.770	13.329	-1730
		3		39.16	0.618	10 571	- 171 2
	VI	ĩ	B (1)	46.53	0.734	12.585	-1715
	••	2	-(*)	40.14	0.633	10.923	-1725
	VII	1	B (1)	49.57	0.782	13.504	-172.7
		2	-(-)	53.63	0.846	14.519	-171.6
		3		60.87	0.960	16.480	-171.7
		-					

Table 2. Enthalpies of solution of various sodium uranates(v1) in 1 mol dm⁻³ hydrochloric acid at 298.15 \pm 0.10 K

Average: $-171.8 \pm 1.0^{\circ}$

^a A, microcalorimeter; B, LKB, 25 cm³; B(1), LKB, 100 cm³. ^b Represents ΔH_5 , ΔH_6 , ΔH_6 , and ΔH_7 , respectively, for the dissolution of β -Na₄UO₅, α -Na₂UO₄, β -Na₂UO₄, and Na₂U₂O₇. ^c Uncertainty limits increased to account for a slight discrepancy between the solution data for preparation I and for the others.

but with reaction periods of 94 h α -Na₂UO₄ was also present, probably due to the interaction of α -Na₄UO₅ and the diuranate, according to reaction (4).

The interaction of Na₂O₂ and UO₂ at 800 °C in oxygen gave salmon coloured β -Na₄UO₅ but according to X-ray powder diffraction analysis the product was always contaminated with a small amount of β -Na₂UO₄. The reaction of 630 °C *in vacuo* gave a mixture of β -Na₄UO₅, Na₂U₂O₇, and α -Na₂UO₄.

$$Na_4UO_5(s,\alpha) + Na_2U_2O_7(s) \longrightarrow 3Na_2UO_4(s,\alpha)$$
 (4)

Although β -Na₄UO₅ appears to be stable up to 950 °C in oxygen, it decomposes in argon at temperatures as low as 750 °C, with the formation of α -Na₂UO₄.

The direct preparation of Na_2UO_4 has been examined via the interaction of equimolar amounts of Na_2O_2 and UO_2 . At temperatures between 600 and 760 °C α -Na₂UO₄ was formed in both argon and oxygen but the products were contaminated

$$\operatorname{Na_4UO_5}(s,\beta) + \{a \operatorname{HCl}, b \operatorname{H_2O}\} \longrightarrow \{4 \operatorname{NaCl}, \operatorname{UO_2Cl_2}, (a-6) \operatorname{HCl}, (b+3) \operatorname{H_2O}\}; \Delta H_5 \quad (5)$$

 $Na_{2}UO_{4}(s,\alpha) + \{a HCl, b H_{2}O\} \rightarrow \{2 NaCl, UO_{2}Cl_{2}, (a - 4)HCl, (b + 2)H_{2}O\};$ $Na_{2}UO_{4}(s,\beta) + \{a HCl, b H_{2}O\} \rightarrow \{2 NaCl, UO_{2}Cl_{2}, (a - 4)HCl, (b + 2)H_{2}O\};$ AH_{2} for the α ph

$$O_{1}(x) + (-HC_{1}(x) + HO_{2}) + (2HC_{2}(x) + 2HO_{2}(x) + (-(++)HO_{2}) + (-(+)HO_{2}) + (-(+)HO_$$

with Na₂U₂O₇, the amount of impurity being less in an oxygen atmosphere. The compound β -Na₂UO₄, which is formed at *ca*. 860 °C in oxygen, was essentially pure according to the X-ray powder pattern of the product. An alternative reaction involving 1:1 mol ratios of β -Na₄UO₅ and UO₂ at 700 °C in oxygen resulted in the formation of almost pure α -Na₂UO₄ after 63 h, only traces of unreacted β -Na₄UO₅ being indicated by X-ray powder diffraction analysis; β -Na₂UO₄ of similar purity was obtained at *ca*. 800 °C.

The somewhat lower temperature observed for the formation of β -Na₂UO₄ (*ca.* 800 °C) than reported previously ¹⁹⁻²¹ (*ca.* 900 °C) may be attributed to the prolonged heating periods during the present study during which the $\alpha \longrightarrow \beta$ conversion was found to be complete only after >40 h.

Attempts to repeat the reported preparation $^{19.22}$ of Na₂UO₄ by heating together UO₃ and Na₂CO₃ in dry air have been unsuccessful. Thus, even after > 120 h at temperatures in the range 760—800 °C the product was still contaminated with Na₂U₂O₇ and Na₂CO₃.

Although 'almost pure' phases have been obtained in certain instances, it is apparent from the foregoing discussion that oxide interactions and, in the case of Na_2UO_4 , uranium oxidesodium carbonate reactions, are not completely satisfactory for the preparation of sodium uranates(VI) of the high purity required for thermodynamic studies. This may be attributed to factors such as difficulties in ensuring intimate mixing of the reagents, the relative ease with which $Na_2U_2O_7$ is formed, and the side reactions it may undergo with, for example, Na_2O_2 and Na_4UO_5 . In addition, the various $UO_2-Na_2O_2$ reactions all involve prolonged reaction periods, often at elevated temperatures, and require frequent regrinding of the mixture.

In view of the difficulties encountered in obtaining pure sodium uranates(v1) from the above reactions, and since in subsequent studies it is intended to extend the scope of the investigations to include other alkali metals as well as the actinide elements neptunium and plutonium, alternative preparative routes have been explored. These involved the preparation of uranium-(IV) and -(V1) complexes with different Na:U ratios followed by thermal decomposition in oxygen.

The complexes studied, all of which were prepared by crystallisation as opposed to precipitation as fine powders, were Na₄U-(C₂O₄)₄·3H₂O, Na₄UO₂(CO₃)₃·nH₂O (*n* varied between 1.5 and 3.5 depending on the extent of drying), Na₂UO₂(C₂O₄)₂· 4H₂O, and NaUO₂(CH₃COO)₃. Preliminary d.t.a. and t.g.a. studies indicated that these compounds decomposed in the temperature range 300–400 °C. In order to obtain highly crystalline sodium uranates(v1) the temperatures chosen for decomposition in oxygen were somewhat higher than these as indicated in Table 1, which also gives the heating periods employed. The products, β -Na₄UO₅, α - and β -Na₂UO₄, and Na₂U₂O₇, were all single phases according to X-ray powder diffraction analysis and, as shown in Table 1, the analytical results were in good agreement with theoretical values.

Enthalpies of Solution and Formation.—Table 2 shows the results obtained for dissolution of the various sodium uranates(v_1) in 1 mol dm⁻³ hydrochloric acid. The dissolution reactions can be represented by equations (5), (6), (6') and (7),

 ΔH_6 for the α phase, $\Delta H_{6'}$ for the β phase (6), (6')

$$\operatorname{Na}_{2}\operatorname{U}_{2}\operatorname{O}_{7}(s) + \{a \operatorname{HCl}, b \operatorname{H}_{2}\operatorname{O}\} \longrightarrow \{2 \operatorname{NaCl}, 2 \operatorname{UO}_{2}\operatorname{Cl}_{2}, (a-6)\operatorname{HCl}, (b+3)\operatorname{H}_{2}\operatorname{O}\}; \Delta H_{7}$$
(7)

respectively, with b/a = 54.4 and a ranging from ca. 400 to 2 500.

The enthalpy of formation at 298 K of the various uranates(v1), according to reactions (8), (9), (9'), and (10),

4 Na (s) + U (s,
$$\alpha$$
) + $\frac{5}{2}$ O₂ (g) \longrightarrow Na₄UO₅ (s, β); ΔH_8 (8)
2 Na (s) + U (s, α) + 2 O₂ (g) $\xrightarrow{}$ Na₂UO₄ (s, α); ΔH_9 (9)
Na₂UO₄ (s, β); $\Delta H_{9'}$ (9')

2 Na (s) + 2 U (s,
$$\alpha$$
) + $\frac{7}{2}$ O₂ (g) \longrightarrow
Na₂U₂O₇ (s); ΔH_{10} (10)

respectively, are calculated from the enthalpies of solution and the relationships (11)—(16). In these calculations, ΔH_{11} , the

Na (s) +
$$\frac{1}{2}$$
 Cl₂ (g) \longrightarrow NaCl (s); ΔH_{11} (11)

NaCl (s) + {
$$a$$
 HCl, b H₂O} \longrightarrow {NaCl, a HCl, b H₂O}; ΔH_{12} (12)

$$U(s,\alpha) + O_2(g) + Cl_2(g) \longrightarrow UO_2Cl_2(s); \Delta H_{13}$$
(13)

$$UO_2Cl_2 (s) + \{a \text{ HCl, } b \text{ H}_2O\} \longrightarrow \\ \{UO_2Cl_2, a \text{ HCl, } b \text{ H}_2O\}; \Delta H_{14} \quad (14)$$

$$\begin{array}{l} \operatorname{H}_{2}\left(\mathrm{g}\right)+\frac{1}{2}\operatorname{O}_{2}\left(\mathrm{g}\right)+\left\{a\operatorname{HCl},b\operatorname{H}_{2}\mathrm{O}\right\}\longrightarrow\\ \left\{a\operatorname{HCl},\left(b+1\right)\operatorname{H}_{2}\mathrm{O}\right\};\Delta H_{15} \end{array} (15)$$

$$\frac{1}{2} \operatorname{H}_{2}(\mathbf{g}) + \frac{1}{2} \operatorname{Cl}_{2}(\mathbf{g}) + \left\{ a \operatorname{HCl}, b \operatorname{H}_{2} \operatorname{O} \right\} \longrightarrow \\ \left\{ (a+1) \operatorname{HCl}, b \operatorname{H}_{2} \operatorname{O} \right\}; \Delta H_{16} \quad (16)$$

standard enthalpy of formation of NaCl (s),²³ -411.26 \pm 0.11 kJ mol⁻¹, and ΔH_{13} , the standard enthalpy of formation of UO₂Cl₂ (s),²⁴ -1243.6 \pm 1.2 kJ mol⁻¹, are taken from the literature; ΔH_{15} and ΔH_{16} represent the partial molar enthalpy of formation of water and hydrochloric acid in 1 mol dm⁻³ HCl, respectively, -285.85 \pm 0.04 and -164.36 \pm 0.10 kJ mol^{-1,24} All these data are compatible with the CODATA selections.¹⁷

For ΔH_{12} , the enthalpy of solution of NaCl (s) in 1 mol dm⁻³ HCl, the average of 4.60 \pm 0.40 kJ mol⁻¹ (for a final solution *ca.* 10⁻² mol dm⁻³ in NaCl), as given by O'Hare *et al.*²⁵ and 4.31 \pm 0.40 kJ mol⁻¹ (for a final solution *ca.* 3 \times 10⁻³ mol dm⁻³ in NaCl), as obtained in the present study from three concordant measurements, has been used; thus $\Delta H_{12} = 4.46 \pm$ 0.40 kJ mol⁻¹. The enthalpy of solution of UO₂Cl₂ (s) in 1 mol dm⁻³ HCl, ΔH_{14} , is taken as -101.7 ± 1.7 kJ mol⁻¹ as recommended by Parker²⁴ for a solution $< 10^{-3}$ mol dm⁻³ in UO₂Cl₂.

Table 3. Crystallographic data for sodium uranates(vi)

		Symmetry ^b	Unit-cell dimensions			
Compound	Preparation ^a		a/Å	b/Å	<i>c/Å</i>	β/°
α-Na₄UO ₅		С	4.764(1)			
β-Na ₄ UO ₅	I	Т	7.556(1)		4.639(1)	
	II		7.557(1)		4.638(1)	
α-Na2UO4	Ι	0	9.767(1)	5.731(1)	3.498(1)	
β-Na ₂ UO ₄	II	0	5.979(1)	5.813(1)	11.726(1)	
Na ₂ U ₂ O ₂	IV	Μ	12.794(3)	7.828(2)	6.888(3)	111.44(3

In combining equations (11)—(16) with (5), (6), (6'), and (7) to obtain the standard enthalpies of formation of the various uranates, the small dilution effects due to the water and HCl formation or depletion in 1 mol dm⁻³ HCl have been assumed to be negligible: this customary practice is quite acceptable in view of the fact that in all instances the uranium concentration in the solutes remains quite low ($<3 \times 10^{-3}$ mol dm⁻³). The influence of the presence of these small uranium concentrations on the various terms (ΔH_{12} , ΔH_{15} , and ΔH_{16}) of the thermodynamic cycle used to obtain the enthalpies of formation of the uranates has also been neglected. These are obtained according to relations (A)—(D).

$$\Delta H_{f}^{*} (\text{Na}_{4}\text{UO}_{5}, \text{s}, \beta) = \Delta H_{8} = 4 \Delta H_{11} + 4 \Delta H_{12} + \Delta H_{13} + \Delta H_{14} + 3 \Delta H_{15} - 6 \Delta H_{16} - \Delta H_{5} = -2 457.3 \pm 2.8 \text{ kJ mol}^{-1} \quad (A)$$

$$\Delta H_{\rm f}^{*} (\text{Na}_2 \text{UO}_4, \text{s}_{,\alpha}) = \Delta H_9 = 2 \ \Delta H_{11} + 2 \ \Delta H_{12} + \Delta H_{13} + \Delta H_{14} + 2 \ \Delta H_{15} - 4 \ \Delta H_{16} - \Delta H_6 = -1 \ 901.3 \ \pm 2.3 \ \text{kJ mol}^{-1} \quad (\text{B})$$

$$\Delta H_{f}^{\circ} (\text{Na}_{2}\text{UO}_{4}, \text{s},\beta) = \Delta H_{9'} = 2 \Delta H_{11} + 2 \Delta H_{12} + \Delta H_{13} + \Delta H_{14} + 2 \Delta H_{15} - 4 \Delta H_{16} - \Delta H_{6'} = -1 889.0 \pm 2.3 \text{ kJ mol}^{-1} (\text{C})$$

$$\Delta H_{\rm f}^{\,\diamond} \,({\rm Na}_2 {\rm U}_2 {\rm O}_7, {\rm s}) = \Delta H_{10} = 2 \,\Delta H_{11} + 2 \,\Delta H_{12} + 2 \,\Delta H_{13} + 2 \,\Delta H_{14} + 3 \,\Delta H_{15} - 6 \,\Delta H_{16} - \Delta H_7 = -3 \,203.8 \pm 2.8 \,\,{\rm kJ} \,\,{\rm mol}^{-1} \quad ({\rm D})$$

The present result for ΔH_f° (Na₄UO₅, s, β), -2457.3 ± 2.8 kJ mol⁻¹, is in very moderate agreement with the value of -2450.6 ± 2.1 kJ mol⁻¹ based on the enthalpy of solution of this compound in 6 mol dm⁻³ HNO₃ obtained by Cordfunke and Loopstra¹⁹ and recalculated by Cordfunke and O'Hare²⁶ using CODATA-compatible auxiliary values. Our value for ΔH_f° (Na₂UO₄, s, α), -1901.3 ± 2.3 kJ mol⁻¹, compares with the value -1897.3 ± 1.1 kJ mol⁻¹ recently reported by Cordfunke *et al.*²² based on measurements in 1.505 mol dm⁻³ H₂SO₄. The latter result superseded two earlier literature values, obtained by the same group of authors, which, after recalculation using CODATA compatible auxiliary values yielded -1889.9 ± 2.1 kJ mol⁻¹ (based on a cycle involving 6 mol dm⁻³ HNO₃)¹⁹ and -1887.8 ± 2.1 kJ mol⁻¹ (based on a cycle involving 0.1 mol dm⁻³ HCl).²⁷ According to Cordfunke *et al.*²² the less negative value obtained for the data in 0.1 mol dm⁻³ HCl is due to the fact that the UO₂Cl₂ sample used in that cycle was hydrated.

The difference between the enthalpies of solution of α - and β -Na₂UO₄, obtained in this study, +12.3 \pm 0.6 kJ mol⁻¹, which reflects the difference in the enthalpies of formation of the two

crystallographic forms of this compound, is in marginal agreement with the value of 13.85 \pm 0.04 reported by O'Hare *et al.*²⁵ In view of the use of the same media by these authors and ourselves, it appears obvious that the small difference in the two sets of data may be due to small variations in the sample nature. The present data and the result of O'Hare *et al.*²⁵ establish with a reasonable accuracy the enthalpy difference between β - and α -Na₂UO₄, a question which required resolution ²⁶ in view of the early value given by Cordfunke and Loopstra,¹⁹ + 6.2 \pm 0.4 kJ mol⁻¹.

Our value for ΔH_{f}^{*} (Na₂U₂O₇, s), -3 203.8 ± 2.8 kJ mol⁻¹, diverges somewhat from the values published earlier by Cordfunke and Loopstra¹⁹ and Cordfunke *et al.*²² Those investigations, using CODATA-compatible auxiliary data, yield -3194.5 ± 2.1 kJ mol⁻¹ (based on a cycle¹⁹ involving 6 mol dm⁻³ HNO₃) and -3194.8 ± 1.8 kJ mol⁻¹ (based on cycle²² involving 1.505 mol dm⁻³ H₂SO₄). In view of the care taken to characterise the samples used in the various studies and in our case to report data based on multiple (six) preparations, we believe that the difference between our results and the previous data may be due to unidentified inconsistencies in the auxiliary data used in the various thermodynamic cycles. This opinion is supported by the fact that recently O'Hare²⁸ obtained a value of -172.4 ± 2.0 kJ mol⁻¹ for the enthalpy of solution in 1 mol dm⁻³ HCl, of part of the $Na_2U_2O_7$ sample employed by Cordfunke et al.²² for their determination in 1.505 mol dm⁻³ H₂SO₄. This value in 1 mol dm⁻³ HCl is in excellent agreement with our own result of $-171.8 \pm 1.0 \text{ kJ mol}^{-1}$ for the same medium.

Crystallographic Results.—Unit-cell dimensions obtained for ' α -Na₄UO₅' prepared by the interaction of UO₂ and Na₂O₂ at ca. 360 °C and for α -Na₂UO₄, β -Na₂UO₄, and Na₂U₂O₇ samples prepared by this method and by thermal decomposition of the complexes are in good agreement with published values.³ The results listed in Table 3 for samples used for determination of enthalpies of solution are typical of those obtained.

Conclusions

Thermal decomposition of uranium-(IV) and -(VI) complexes such as Na₄UO₂(CO₃)₃•nH₂O (1.5 < n < 3.5), Na₄U(C₂O₄)₄• 3H₂O, Na₂UO₂(C₂O₄)₂•4H₂O, and NaUO₂(CH₃COO)₃ in oxygen provides convenient routes to the high-purity sodium uranates(VI), β -Na₄UO₅, α - and β -Na₂UO₄, and Na₂U₂O₇. This method appears to be more convenient and more reliable than Na₂O₂-UO₂ interactions.

The enthalpies of formation reported, based on enthalpies of solution of compounds prepared by thermal decomposition methods, reveal small differences compared with literature data either as assessed by Cordfunke and O'Hare²⁶ or published

The results for α - and β -Na₂UO₄ agree reasonably well with those recalculated ²⁶ on the basis of the results of O'Hare *et al.*²⁵ and therefore provide confirmation of the enthalpy of the $\alpha \longrightarrow \beta$ transition for this compound.

Acknowledgements

The financial help of the Institut Interuniversitaire des Sciences Nucléaires (Brussels) to the Laboratory of Analytical Chemistry and Radiochemistry of the University of Liège is gratefully acknowledged. We thank F. T. Birks (Chem. Div., A.E.R.E.) and D. A. Brown (E. & M.Sc. Div., A.E.R.E.) for sodium analyses, and N. Bridger (M.D. Div., A.E.R.E.) for d.t.a. and t.g.a. studies. This work was supported in part by the S.E.R.C. through a C.A.S.E. award (to A. I. J.).

References

- 1 Part 5, J. Fuger and D. Brown, J. Chem. Soc., Dalton Trans., 1975, 2256.
- 2 C. Keller, Int. Rev. Sci., Inorg. Chem. Ser. 1, 1972, 7, 47.
- 3 C. Keller, Gmelin Handbuch der Anorg. Chemie, Uran., 1979, vol. 3C.
- 4 L. R. Morss, J. Fuger, and H. D. B. Jenkins, J. Chem. Thermodyn., 1982, 14, 377.
- 5 L. R. Morss, C. W. Williams, I. K. Choi, R. Gens, and J. Fuger, J. Chem. Thermodyn., 1983, 15, 1093.
- 6 R. Gens, J. Fuger, L. R. Morss, and C. W. Williams, J. Chem. Thermodyn., in the press.
- 7 D. Brown, B. Whittaker, and P. E. Lidster, Report AERE-R-8035, A.E.R.E., Harwell, 1975.
- 8 J. A. C. Marples, and J. L. Shaw, Report AERE-R-5210, A.E.R.E., Harwell, 1966.
- 9 J. Fuger, Annual Reports Euratom-University of Liège Research Contract 011-64 TPUB, 1965, 1966.
- 10 J. Fuger, D. Brown, and J. F. Easey, J. Chem. Soc. A, 1969, 2995.

- 11 J. Fuger, J. C. Spirlet, and W. Müller, *Inorg. Nucl. Chem. Lett.*, 1972, **8**, 709.
- 12 J. Fuger and D. Brown, J. Chem. Soc., Dalton Trans., 1980, 1076.
- 13 H. Sunderman and H. Wagner, Report KFK-819, Kernforschungszentrum Karlsruhe, 1968.
- 14 'Atomic Weights of the Elements 1979,' ed. N. E. Holden, *Pure Appl. Chem.*, 1980, **52**, 2349.
- 15 W. J. Youden, 'Statistical Methods for Chemists,' Wiley, New York, 1967, pp. 18-20.
- 16 J. W. Mellor, 'Higher Mathematics,' Dover, New York, 1946, pp. 527-531.
- 17 'CODATA Recommended Key Values for Thermodynamics 1977,' J. Chem. Thermodyn., 1978, 10, 903.
- 18 C. Keller, Report KFK-225, Kernforschungszentrum Karlsruhe, 1964.
- 19 E. H. P. Cordfunke and B. O. Loopstra, J. Inorg. Nucl. Chem., 1971, 33, 2427.
- 20 S. F. Bartram and R. E. Fryxell, J. Inorg. Nucl. Chem., 1970, 32, 3701.
- 21 E. A. Ippolitova, Yu. P. Simonov, K. M. Efremova, and V. M. Shatskii, English Translation of Issledovaniya V. Oblasti Khimii Urana, Moscow University (1964), ANL Trans-33-34, 1964.
- 22 E. H. P. Cordfunke, R. P. Muis, W. Ouweltjes, H. P. Flotow, and P. A. G. O'Hare, J. Chem. Thermodyn., 1982, 14, 313.
- 23 V. B. Parker, D. D. Wagman, and D. Garvin, U.S. National Bureau of Standards, Report NBSIR75-968, 1976.
- 24 V. B. Parker, U.S. National Bureau of Standards, Report NBSIR80-2029, 1980.
- 25 P. A. G. O'Hare, H. R. Hoekstra, and D. K. Fredrickson, J. Chem. Thermodyn., 1976, 8, 255.
- 26 E. H. P. Cordfunke and P. A. G. O'Hare, 'The Chemical Thermodynamics of Actinide Elements and Compounds,' eds. E. F. Westrum, jun., and V. A. Medvedev, IAEA, Vienna, 1978, part 3.
- 27 P. A. G. O'Hare and H. R. Hoekstra, J. Chem. Thermodyn., 1973, 5, 769.
- 28 P. A. G. O'Hare, personal communication, 1984.

Received 6th September 1984; Paper 4/1538